Bounded Normal Approximation in Highly Reliable Markovian Systems
نویسندگان
چکیده
In this paper, we give a necessary and sufficient condition to perform a good normal approximation for the Monte Carlo evaluation of highly reliable Markovian systems. We have recourse to simulation because of the frequent huge state space in practical systems. Literature has focused on the property of bounded relative error. In the same way, we can focus on bounded normal approximation. We see that the set of systems with bounded normal approximation is (strictly) included in the set of systems with bounded relative error. Key-words: Simulation, Normal Approximation, Markov Chains, Highly Reliable Systems.
منابع مشابه
General Conditions for Bounded Relative Error in Simulations of Highly Reliable Markovian Systems
We establish a necessary condition for any importance sampling scheme to give bounded relative error when estimating a performance measure of a highly reliable Markovian system. Also, a class of importance sampling methods is defined for which we prove a necessary and sufficient condition for bounded relative error for the performance measure estimator. This class of probability measures includ...
متن کاملOn Derivative Estimation of the Mean Time to Failure in Simulations of Highly Reliable Markovian Systems
The mean time to failure (MTTF) of a Markovian system can be expressed as a ratio of two expectations. For highly reliable Markovian systems, the resulting ratio formula consists of one expectation that cannot be estimated with bounded relative error when using standard simulation, while the other, which we call a non-rare expectation, can be estimated with bounded relative error. We show that ...
متن کاملApproximating zero-variance importance sampling in a reliability setting
We consider a class of Markov chain models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multicomponent systems in reliability settings. We are interested in the design of efficient importance sampling (IS) schemes to estimate the reliability of such systems by simulation. For these models, there is in fact a zero-variance IS scheme that can...
متن کاملQuick Simulation Methods for Estimating the Unreliability of Regenerative Models of Large, Highly Reliable Systems
We investigate fast simulation techniques for estimating the unreliability in large Markovian models of highly reliable systems for which analytical0numerical techniques are difficult to apply+ We first show mathematically that for “small” time horizons, the relative simulation error, when using the importance sampling techniques of failure biasing and forcing, remains bounded as component fail...
متن کاملImportance Sampling Simulations of Markovian Reliability Systems Using Cross-Entropy
This paper reports simulation experiments, applying the cross entropy method such as the importance sampling algorithm for efficient estimation of rare event probabilities in Markovian reliability systems. The method is compared to various failure biasing schemes that have been proved to give estimators with bounded relative errors. The results from the experiments indicate a considerable impro...
متن کامل